extremally stable system - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

extremally stable system - translation to ρωσικά

CONCEPT IN MATHEMATICS
Structurally stable; Rough system

extremally stable system      
экстремально устойчивая система
stable isotope         
  • Binding energy per nucleon of common isotopes.
NUCLEUS OF THIS ISOTOPE DOES NOT UNDERGO RADIOACTIVE DECAY
Band of stability; Band of Stability; Stable nuclei; Stable atom; Stable nuclides; Observationally Stable; Observationally stable isotope; Stable isotope; Observationally stable

общая лексика

стабильный изотоп

stable distribution         
DISTRIBUTION OF VARIABLES WHICH SATISFIES A STABILITY PROPERTY UNDER LINEAR COMBINATIONS
Levy alpha-stable distributions; Stable distributions; Lévy skew alpha-stable distribution; Stable Distribution; Alpha-stable distribution; Stable random variable; Stable Paretian distribution; Alpha-stable; Lévy alpha-stable distribution; Stable law

математика

устойчивое распределение

Ορισμός

СИ-БИ-ЭС
см. "Коламбия бродкастинг систем".

Βικιπαίδεια

Structural stability

In mathematics, structural stability is a fundamental property of a dynamical system which means that the qualitative behavior of the trajectories is unaffected by small perturbations (to be exact C1-small perturbations).

Examples of such qualitative properties are numbers of fixed points and periodic orbits (but not their periods). Unlike Lyapunov stability, which considers perturbations of initial conditions for a fixed system, structural stability deals with perturbations of the system itself. Variants of this notion apply to systems of ordinary differential equations, vector fields on smooth manifolds and flows generated by them, and diffeomorphisms.

Structurally stable systems were introduced by Aleksandr Andronov and Lev Pontryagin in 1937 under the name "systèmes grossiers", or rough systems. They announced a characterization of rough systems in the plane, the Andronov–Pontryagin criterion. In this case, structurally stable systems are typical, they form an open dense set in the space of all systems endowed with appropriate topology. In higher dimensions, this is no longer true, indicating that typical dynamics can be very complex (cf strange attractor). An important class of structurally stable systems in arbitrary dimensions is given by Anosov diffeomorphisms and flows.

Μετάφραση του &#39extremally stable system&#39 σε Ρωσικά